Uniting MEarth and TESS

KRISTO MENT

CENTER FOR **ASTROPHYSICS**

HARVARD & SMITHSONIAN

MEarth Team: David Charbonneau, Jonathan Irwin, Jen Winters, et al.

Image: SpaceX

MEarth-South Cerro Tololo, Chile

MEarth-North Mt Hopkins, AZ

MEarth Targets in Sectors 1-12

• MEarth data modeling

- MEarth planets in Sectors 1-12
- MEarth contribution to TESS discoveries
- TESS vetting of MEarth targets of interest

MEarth finds terrestrial planets in real time Discovery of LHS 1140 c on 14 Aug 2016

Ment et al 2019

We also use an Advanced BLS Search

Advanced BLS Vetting with 15 parameters

2	M-580.R6.2			OK		
Ρ	0.462932	Δχ ²		353.16		276.4
1	Transit midpoint			JD 57397.97267		
2	Transit duration			28.98 min		GREAT
3	Transit depth			4.2 mmag		OK
4	Reduced $\Delta\chi^2$			2.67		DUBIOUS
5	Reduced $\Delta \chi^2$ (in-transit)			2.91		GREAT
6	Max. night contribution			14.2%		OK
7	# of in-transit data (exp)			158 (152)		GREAT
8	# of in-transit nights (sig:insig)			101 (17:34)		OK
9	Depth IC odd-even			6.3%		GREAT
10	Depth IC meridian flips			-2.7%		GREAT
11	Depth IC trigger nights			-9.4%		GREAT
12	Depth IC half-phase			-116%		OK
13	Depth IC noise			5.2%		OK
14	Ingress/egress baseline IC			6.3%		GREAT
15	Frac. $\Delta\chi^2$ of quadratic fit			1.165		OK

Advanced BLS

Noise Spectrum

Advanced BLS

Noise Spectrum

after subtracting "noise"

Shortlist of MEarth planet candidates

-0.015 -0.010 0.005 0.000 0.005 0.010 0.015 0.020 -1.5 -1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5

Time / transit duration

Shortlist of MEarth planet candidates

Time / transit duration

- MEarth data modeling has produced a series of new planets and potential candidates
- MEarth planets in Sectors 1-12
- MEarth contribution to TESS discoveries
- TESS vetting of MEarth targets of interest

- MEarth data modeling has produced a series of new planets and potential candidates
- MEarth planets in Sectors 1-12
- MEarth contribution to TESS discoveries
- TESS vetting of MEarth targets of interest

M4.5 V type 15.0 pc away

P = 24.73696 days $7.0 \pm 0.9 \ M_{Earth}$ $1.73 \pm 0.03 R_{earth}$ within HZ MEarth 0.00 0.02 0.03 -1.5-1.0-0.5 0.0 0.5 1.0 1.5 2.0 2.5

Time / transit duration

P = 3.77797 days $1.8 \pm 0.4 \ M_{Earth}$ $1.28 \pm 0.02 \ R_{earth}$ $T \sim 440 \text{ K}$ MEarth 1.0075 1.0050 -1.0025 2200.1-Selative brightness Relative brightness 0.9925 -0.99000.0 1.5 -1.0-0.50.5 1.0 2.0 2.5 -1.5Orbital phase (normalized to transit duration)

M4.5 V type 15.0 pc away

TESS

Relativ

0

-1

LHS 1140 b

P = 24.73696 days $7.0 \pm 0.9 \text{ M}_{\text{Earth}}$ $1.73 \pm 0.03 \text{ R}_{\text{earth}}$ within HZ

0.00

-3

P = 3.77797 days $1.8 \pm 0.4 \ M_{Earth}$ $1.28 \pm 0.02 \ R_{earth}$ $T \sim 440 \text{ K}$ MEarth 1.0075 1.0050 -1.0025 2200.1-Selative brightness Relative brightness 0.9925 -2 -1 2

Dhace (Hours

Source: SPOC

1.5

Source: SPOC

GJ 1132 b

- MEarth data modeling has produced a series of new planets and potential candidates
- All 3 MEarth planets in Sectors 1-12 have been observed and confirmed by TESS
- MEarth contribution to TESS discoveries
- TESS vetting of MEarth targets of interest

- MEarth data modeling has produced a series of new planets and potential candidates
- All 3 MEarth planets in Sectors 1-12 have been observed and confirmed by TESS
- MEarth contribution to TESS discoveries
- TESS vetting of MEarth targets of interest

LHS 3844 b

Vanderspek et al 2019

Rotational modulation of LHS 3844

LP 791-18 b

MEarth

Orbital period: 0.9480050 ± 0.0000058 days $R_p/R^* = 0.0604 \pm 0.0028$

LEHPM 5228 (TOI 226.01)

- MEarth data modeling has produced a series of new planets and potential candidates
- All 3 MEarth planets in Sectors 1-12 have been observed and confirmed by TESS
- MEarth has helped validate and further characterize several TESS discoveries (including LHS 3844 b and LP 791-18 b) and rule out a spurious TOI (226.01)
- TESS vetting of MEarth targets of interest

- MEarth data modeling has produced a series of new planets and potential candidates
- All 3 MEarth planets in Sectors 1-12 have been observed and confirmed by TESS
- MEarth has helped validate and further characterize several TESS discoveries (including LHS 3844 b and LP 791-18 b) and rule out a spurious TOI (226.01)
- TESS vetting of MEarth targets of interest

Shortlist of MEarth planet candidates

1.5 –1.0 –0.5 0.0 0.5 1.0 1.5 2.0 2 Time / transit duration

- MEarth data modeling has produced a series of new planets and potential candidates
- All 3 MEarth planets in Sectors 1-12 have been observed and confirmed by TESS
- MEarth has helped validate and further characterize several TESS discoveries (including LHS 3844 b and LP 791-18 b) and rule out a spurious TOI (226.01)
- TESS has ruled out a dozen of MEarth candidates, and will provide definitive answers for many more in the remaining sectors

Uniting MEarth and TESS

KRISTO MENT

CENTER FOR **ASTROPHYSICS**

HARVARD & SMITHSONIAN

Thank you for your attention!

MEarth Team: David Charbonneau, Jonathan Irwin, Jen Winters, et al.

Image: SpaceX